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Quantitative Analysis / Verification
Does the brake software always 
actuate the brakes within 1 ms?
Safety-critical embedded systems

Can this new app drain my 
iPhone battery in an hour?
Consumer devices

How much energy must the sensor 
node harvest for RSA encryption?
Energy-limited sensor nets,              
biomedical apps, etc.
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CPS Properties
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 Cyber-physical systems properties:
1. Qualitative:

 Correctness
 Reachability
 Liveness
 …

2. Quantitative (measurable):
 Time to start the response (time to react)
 Time to finish the response (execution time)
 Resource usage (power, energy, memory, …)
 …

 For each measure, there is a constraint
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Importance of Time
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 Time is central to cyber-physical systems
 Several timing analysis problems:

 Worst-case execution time (WCET) estimation
 Estimating distribution of execution times
 Threshold property: can you produce a test 

case that causes a program to violate its 
deadline?

 Software-in-the-loop simulation: predict 
execution time of particular program path

 These are all various forms of the same 
basic problem.
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WCET Definition

6

 The longest time taken by a software task 
to execute
 Function of input data and environment 

conditions
 BCET = Best-Case Execution Time 

(shortest time taken by the task to 
execute)

 We are often concerned by WCET
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WCET Taxonomy
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Estimation ≠ Measurement
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 Often what we need is:
 An upper bound on the WCET or 
 A lower bound on the BCET

 Tight bound: when the computed bound 
equals the actual WCET or BCET

 Loose bound: if there is a considerable 
gap between the actual value and the 
computed bound

 Computing loose bounds may be much 
easier than tight bounds.
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Problems of Interest
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 Extreme case analysis:
 WCET or BCET estimation or measurement

 Threshold analysis:
 Instead of the actual WCET or BCET, we look 

for crossing a given threshold
 Average-Case analysis:

 Instead of the actual WCET or BCET, we are 
interested in typical (average) amounts
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Issues With WCET

10

 Given:
1. the code for a software task 
2. the platform (OS + hardware) that it will run on 

Determine the WCET of the task.
 Why is this important? Where is the WCET used?

 The WCET is central to the design of Embedded 
Systems:
 Needed for correctness (does the task finish in time?) and 

performance (find optimal schedule for tasks)
 Real-time requirement evaluation

 Can WCET always be found (or estimated)?
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Typical WCET Problem
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Turning a Program Into A Graph
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Defining Basic Blocks
 Basic block:

 A sequence of consecutive program statements
 The flow of control enters only at the 

beginning of this sequence and leaves only at 
the end

 Without halting or the possibility of branching 
except at the end

 Examples in the next slide
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Basic Block Examples
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Separating Data From Control
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 Control flow graph 
(CFG):
 A directed graph
 Nodes: basic blocks
 Edges: flow control
 Possible to have 

special edges to 
transfer to and return 
from function calls
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Effect of Function Calls
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CFG with Function Call
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Factors Determining WCET
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 Program path (control flow) analysis:
 Want to find longest path through the program 
 Find loop bounds 
 Identify feasible paths through the program 
 Identify dependencies amongst different code fragments

 Processor behavior analysis:
 For small code fragments (basic blocks), generate 

bounds on run-times on the platform
 Model details of architecture, including cache behavior, 

pipeline stalls, branch prediction, etc.
 Outputs of both analyses feed into each other
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Unclear Loop Bound
 How many times this loop iterates?
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Exponential Path Space
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 Nested loop: 210000 paths!
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Path Feasibility 
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Memory Hierarchy (1)
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One initial miss, 
followed by all hits
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Memory Hierarchy (2)

23

Every access to the 
cache will be a miss
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Linear Programming
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 Linear programming:
 The process of optimizing a linear function under linear 

constraints
 Each constraint is represented 

by an equation or inequality 
which is a line/plane/… in an n-
dimensional space

 All constraints need to be 
satisfied simultaneously

 The solution (if any) lies on or 
within the object formed in the 
n-dimensional space

 In 2D, each equation/inequality 
is a line, hence “linear”
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Integer Linear Programming
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 If all solutions are integers, then it is called 
integer linear programming (ILP)
 If solutions are either 1 or 0, called 0-1-ILP, ZOLP, or 

binary linear programming
 If some solutions are 1 or 0, called mixed ILP (MILP)
 In general: intractable (NP-hard)
 But many solvers exist
 Biggest problem: not scalable

 If at least one inequality is nonlinear, then
 Use a nonlinear solver
 Convert to linear and use a linear solver
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WCET by ILP
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ILP Formulation
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ILP Formulation (Cont’d)
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Results:
x1=d1=d2=1
x3=d3=d4=10
x2=11
x4=d5=d6=1

Note that logical 
flow constraints, 
cache behavior, or 
other constraints 
may be added to 
equations without 
increasing 
complexity!



Embedded Systems Design and Modeling

Timing Analysis and Compositionality
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Focusing on Measurement
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 How to measure run-time?
 Several techniques, with varying 
accuracy:

1. Instrument code to sample CPU cycle counter
 relatively easy to do, read processor documentation 

for assembly instruction
2. Use cycle-accurate simulator for processor 

 useful when hardware is not available/ready
3. Use Logic Analyzer

 non-intrusive measurement, more accurate
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Cycle Counters

31



Embedded Systems Design and Modeling

Measuring with Cycle Counter
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Cycle Counter (Cont’d)
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Measurement Pitfalls
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 Instrumentation incurs small overhead
 Measure long enough code sequence to 

compensate
 Multi-tasking effects: counter keeps going even when 

the task of interest is inactive
 Take multiple measurements and pick “k best” 

(cluster)
 Multicores/hyperthreading

 Need to ensure that task is ‘locked’ to a single core
 Power management effects

 CPU speed might change, timer could get reset 
during hibernation
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WCET Open Problems
 Accurate WCET estimation/measurement 

requires detailed understanding of the 
architecture

 Analysis methods are brittle: small 
changes in the code and/or architecture 
can require complete redone

 Need to deal with concurrency, interrupt, 
preemption, scheduling, etc.

 Need more reliable techniques for WCET 
measurement

35
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Tools for WCET Analysis
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Other Quantitative Measures (1)
 Memory bound analysis:

 Limited memory in embedded systems
 Need to use memory efficiently

 Analysis methods:
 Stack size: compute upper bound on stack

 Generates a call graph to predict stack usage
 Heap analysis: predict heap usage to avoid 

software crash or performance degradation
 Harder than stack bound b/c heap usage depends on 

input data
 Also depends on implementation
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Other Quantitative Measures (2)
 Power and energy analysis:

 Limited energy budget in embedded systems
 Need to manage energy consumption 

efficiently
 Energy usage depends on:

 execution time
 switching activity
 both depend on the input data

 Focus on average power consumption instead
 Estimation by instruction profiling
 Software benchmarking

38
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Homework Assignments
 Chapter 16: your choice
 Due date: any time before final exam!
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Further Thoughts
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 Go over AbsInt’s aiT


