
Embedded Systems Design and Modeling 1

Embedded Systems
Design and Modeling

Chapter 16
Quantitative Analysis

Embedded Systems Design and Modeling

Outline

2

Embedded Systems Design and Modeling

Quantitative Analysis / Verification
Does the brake software always
actuate the brakes within 1 ms?
Safety-critical embedded systems

Can this new app drain my
iPhone battery in an hour?
Consumer devices

How much energy must the sensor
node harvest for RSA encryption?
Energy-limited sensor nets,
biomedical apps, etc.

Embedded Systems Design and Modeling

CPS Properties

4

 Cyber-physical systems properties:
1. Qualitative:

 Correctness
 Reachability
 Liveness
 …

2. Quantitative (measurable):
 Time to start the response (time to react)
 Time to finish the response (execution time)
 Resource usage (power, energy, memory, …)
 …

 For each measure, there is a constraint

Embedded Systems Design and Modeling

Importance of Time

5

 Time is central to cyber-physical systems
 Several timing analysis problems:

 Worst-case execution time (WCET) estimation
 Estimating distribution of execution times
 Threshold property: can you produce a test

case that causes a program to violate its
deadline?

 Software-in-the-loop simulation: predict
execution time of particular program path

 These are all various forms of the same
basic problem.

Embedded Systems Design and Modeling

WCET Definition

6

 The longest time taken by a software task
to execute
 Function of input data and environment

conditions
 BCET = Best-Case Execution Time

(shortest time taken by the task to
execute)

 We are often concerned by WCET

Embedded Systems Design and Modeling

WCET Taxonomy

7

Embedded Systems Design and Modeling

Estimation ≠ Measurement

8

 Often what we need is:
 An upper bound on the WCET or
 A lower bound on the BCET

 Tight bound: when the computed bound
equals the actual WCET or BCET

 Loose bound: if there is a considerable
gap between the actual value and the
computed bound

 Computing loose bounds may be much
easier than tight bounds.

Embedded Systems Design and Modeling

Problems of Interest

9

 Extreme case analysis:
 WCET or BCET estimation or measurement

 Threshold analysis:
 Instead of the actual WCET or BCET, we look

for crossing a given threshold
 Average-Case analysis:

 Instead of the actual WCET or BCET, we are
interested in typical (average) amounts

Embedded Systems Design and Modeling

Issues With WCET

10

 Given:
1. the code for a software task
2. the platform (OS + hardware) that it will run on

Determine the WCET of the task.
 Why is this important? Where is the WCET used?

 The WCET is central to the design of Embedded
Systems:
 Needed for correctness (does the task finish in time?) and

performance (find optimal schedule for tasks)
 Real-time requirement evaluation

 Can WCET always be found (or estimated)?

Embedded Systems Design and Modeling

Typical WCET Problem

11

Embedded Systems Design and Modeling

Turning a Program Into A Graph

12

Embedded Systems Design and Modeling

Defining Basic Blocks
 Basic block:

 A sequence of consecutive program statements
 The flow of control enters only at the

beginning of this sequence and leaves only at
the end

 Without halting or the possibility of branching
except at the end

 Examples in the next slide

13

Embedded Systems Design and Modeling

Basic Block Examples

14

Embedded Systems Design and Modeling

Separating Data From Control

15

 Control flow graph
(CFG):
 A directed graph
 Nodes: basic blocks
 Edges: flow control
 Possible to have

special edges to
transfer to and return
from function calls

Embedded Systems Design and Modeling

Effect of Function Calls

16

Embedded Systems Design and Modeling

CFG with Function Call

17

Embedded Systems Design and Modeling

Factors Determining WCET

18

 Program path (control flow) analysis:
 Want to find longest path through the program
 Find loop bounds
 Identify feasible paths through the program
 Identify dependencies amongst different code fragments

 Processor behavior analysis:
 For small code fragments (basic blocks), generate

bounds on run-times on the platform
 Model details of architecture, including cache behavior,

pipeline stalls, branch prediction, etc.
 Outputs of both analyses feed into each other

Embedded Systems Design and Modeling

Unclear Loop Bound
 How many times this loop iterates?

19

Embedded Systems Design and Modeling

Exponential Path Space

20

 Nested loop: 210000 paths!

Embedded Systems Design and Modeling

Path Feasibility

21

Embedded Systems Design and Modeling

Memory Hierarchy (1)

22

One initial miss,
followed by all hits

Embedded Systems Design and Modeling

Memory Hierarchy (2)

23

Every access to the
cache will be a miss

Embedded Systems Design and Modeling

Linear Programming

24

 Linear programming:
 The process of optimizing a linear function under linear

constraints
 Each constraint is represented

by an equation or inequality
which is a line/plane/… in an n-
dimensional space

 All constraints need to be
satisfied simultaneously

 The solution (if any) lies on or
within the object formed in the
n-dimensional space

 In 2D, each equation/inequality
is a line, hence “linear”

Embedded Systems Design and Modeling

Integer Linear Programming

25

 If all solutions are integers, then it is called
integer linear programming (ILP)
 If solutions are either 1 or 0, called 0-1-ILP, ZOLP, or

binary linear programming
 If some solutions are 1 or 0, called mixed ILP (MILP)
 In general: intractable (NP-hard)
 But many solvers exist
 Biggest problem: not scalable

 If at least one inequality is nonlinear, then
 Use a nonlinear solver
 Convert to linear and use a linear solver

Embedded Systems Design and Modeling

WCET by ILP

26

Embedded Systems Design and Modeling

ILP Formulation

27

Embedded Systems Design and Modeling

ILP Formulation (Cont’d)

28

Results:
x1=d1=d2=1
x3=d3=d4=10
x2=11
x4=d5=d6=1

Note that logical
flow constraints,
cache behavior, or
other constraints
may be added to
equations without
increasing
complexity!

Embedded Systems Design and Modeling

Timing Analysis and Compositionality

29

Embedded Systems Design and Modeling

Focusing on Measurement

30

 How to measure run-time?
 Several techniques, with varying
accuracy:

1. Instrument code to sample CPU cycle counter
 relatively easy to do, read processor documentation

for assembly instruction
2. Use cycle-accurate simulator for processor

 useful when hardware is not available/ready
3. Use Logic Analyzer

 non-intrusive measurement, more accurate

Embedded Systems Design and Modeling

Cycle Counters

31

Embedded Systems Design and Modeling

Measuring with Cycle Counter

32

Embedded Systems Design and Modeling

Cycle Counter (Cont’d)

33

Embedded Systems Design and Modeling

Measurement Pitfalls

34

 Instrumentation incurs small overhead
 Measure long enough code sequence to

compensate
 Multi-tasking effects: counter keeps going even when

the task of interest is inactive
 Take multiple measurements and pick “k best”

(cluster)
 Multicores/hyperthreading

 Need to ensure that task is ‘locked’ to a single core
 Power management effects

 CPU speed might change, timer could get reset
during hibernation

Embedded Systems Design and Modeling

WCET Open Problems
 Accurate WCET estimation/measurement

requires detailed understanding of the
architecture

 Analysis methods are brittle: small
changes in the code and/or architecture
can require complete redone

 Need to deal with concurrency, interrupt,
preemption, scheduling, etc.

 Need more reliable techniques for WCET
measurement

35

Embedded Systems Design and Modeling

Tools for WCET Analysis

36

Embedded Systems Design and Modeling

Other Quantitative Measures (1)
 Memory bound analysis:

 Limited memory in embedded systems
 Need to use memory efficiently

 Analysis methods:
 Stack size: compute upper bound on stack

 Generates a call graph to predict stack usage
 Heap analysis: predict heap usage to avoid

software crash or performance degradation
 Harder than stack bound b/c heap usage depends on

input data
 Also depends on implementation

37

Embedded Systems Design and Modeling

Other Quantitative Measures (2)
 Power and energy analysis:

 Limited energy budget in embedded systems
 Need to manage energy consumption

efficiently
 Energy usage depends on:

 execution time
 switching activity
 both depend on the input data

 Focus on average power consumption instead
 Estimation by instruction profiling
 Software benchmarking

38

Embedded Systems Design and Modeling

Homework Assignments
 Chapter 16: your choice
 Due date: any time before final exam!

39

Embedded Systems Design and Modeling

Further Thoughts

40

 Go over AbsInt’s aiT

