Embedded Systems
Design and Modeling

Embedded Systems Design and Modeling



Outline

Qutline of the Lecture

o Programs as Graphs

o Challenges of Execution Time Analysis

o Current Approaches; Measuring Execution Time
o Limitations and Future Directions

Embedded Systems Design and Modeling




Quantitative Analysis / Verification

Does the brake software always
actuate the brakes within 1 ms?
Safety-critical embedded systems

Can this new app drain my
IPhone battery in an hour?
Consumer devices

How much energy must the sensor
node harvest for RSA encryption?
Energy-limited sensor nets,
biomedical apps, etc.

Embedded Systems Design and Modeling




CPS Properties

O Cyber-physical systems properties:
1. Qualitative:
Correctness

Reachability
Liveness

2. Quantitative (measurable):
Time to start the response (time to react)
Time to finish the response (execution time)
Resource usage (power, energy, memory, ...)

O For each measure, there Is a constraint
Embedded Systems Design and Modeling




Importance of Time

O Time Is central to cyber-physical systems

O Several timing analysis problems:
= Worst-case execution time (WCET) estimation
= Estimating distribution of execution times

= Threshold property: can you produce a test
case that causes a program to violate its
deadline?

= Software-in-the-loop simulation: predict
execution time of particular program path
O These are all various forms of the same

basic problem.
Embedded Systems Design and Modeling




WCET Definition

O The longest time taken by a software task
to execute

= Function of input data and environment
conditions

0 BCET = Best-Case Execution Time
(shortest time taken by the task to
execute)

O We are often concerned by WCET

Embedded Systems Design and Modeling




WCET Taxonomy

Worst-Case Execution Time (WCET) & BCET

i worst-case performance
E
= worst-case guarantee
0
& The actual WCET
B Minimal must be found or | Maximal
2 observed upper bounded | ohserved
e execution execution
= time _ : time
Ll I“I ‘ “ I "““I"" [T ._~| -
0 _— time
-—— measured execution times
- possible execution times -
- timing predictability .

E Figure from R.Wilhelm et al., ACM Trans. Embed. Comput. Sys, 2007.




Estimation = Measurement

O Often what we need Is:
= An upper bound on the WCET or
m A lower bound on the BCET

o Tight bound: when the computed bound
equals the actual WCET or BCET

O Loose bound: if there Is a considerable
gap between the actual value and the
computed bound

o Computing loose bounds may be much
easler than tight bounds.

Embedded Systems Design and Modeling




Problems of Interest

O Extreme case analysis:
m WCET or BCET estimation or measurement

O Threshold analysis:

= Instead of the actual WCET or BCET, we look
for crossing a given threshold

O Average-Case analysis:

= Instead of the actual WCET or BCET, we are
Interested In typical (average) amounts

Embedded Systems Design and Modeling




Issues With WCET

o Given:
1. the code for a software task
2. the platform (OS + hardware) that it will run on

Determine the WCET of the task.

0o Why is this important? Where is the WCET used?

= The WCET is central to the design of Embedded
Systems:

Needed for correctness (does the task finish in time?) and
performance (find optimal schedule for tasks)

Real-time requirement evaluation

o Can WCET always be found (or estimated)?

10

Embedded Systems Design and Modeling




Typical WCET Problem

Task executes within an infinite loop

while(1) { This code typically has:
read_sensors(); o loops with finite bounds

‘ compute(); ‘ o no recursion

write_to_actuators(); | Additional assumptions:

) o runs uninterrupted

o single-threaded

11

Embedded Systems Design and Modeling




Turning a Program Into A Graph

Example Program: Modular Exponentiation

W (=] e | o L I LFY ] Isd —_

L T T T =P
VS O = N LR i L R e

$define EXF_BITS 32
typedef unsigned int UI;
UTI modexp(UI base,

int 1i:
Ul result = 1;

UI exponent,

i = EXP_BITS;

while(i > () {
if ((exponent & 1) == 1) |
raegult = (result + base)

}
exponent >>= 1;
base =
=y

1

return result;

(base * base) % mod;

Embedded Systems Design and Modeling

B (52)8/2 — (beﬁ)ga e 1S even,
@) D/2 . p = (p(e=D/2)2.p, e is odd.
UT mod] {
% mod;
12




Defining Basic Blocks

O Basic block:
= A seguence of consecutive program statements

= The flow of control enters only at the
beginning of this sequence and leaves only at
the end

= Without halting or the possibility of branching
except at the end

0 Examples in the next slide

13

Embedded Systems Design and Modeling




Basic Block Examples

Example Program: Modular Exponentiation

$define EXF_BITS 32
typedef unsigned int UI;

UI modexp(UI base, UI exponent, UI mod) {

L= (=] e | o L I LFY ] Isd —_

int 1i:
Ul result = 1;
i = EXP_BITS;

10 while(1 > () |

11 if {{exponent & 1) == 1} |

12 rasult = (result * base) % mod:
13 1

14 exponent >>= 1;

15 base = (base * base) % mod;

16 s

u y

18 return result;

14

Embedded Systems Design and Modeling




Separating Data From Control

1

o Control flow graph [l = ]
(CFG): i = EXP_BITS;
= A directed graph I
= Nodes: basic blocks 3 |
= Edges: flow control *—|(expenent & 1” — 7]

m Possible to have

[resul—t = (result * base) % mod;

special edges to
transfer to and return —ay
frOm funCtlon Ca”S :Li?&.se = (base * base) 3% rr;c-:i;]

=

l==y¢

&

-{ return result; ]

Embedded Systems Design and Modeling




Effect of Function Calls

Embedded Syster

=T - < HE T = LT I

Fd Fd Fd P = e e e e ek ek ek b
W M o= O O o =~ W R W N = O

#define EXP_BITS 32
typedef unsigned int UI;
Ul exponenth base, mod;

UI update (UI r) {

Ul res = r;
if ((exponent & 1) == 1) {
res = (res * base) % mod;

}

exponent >>= 1;
[s]

base = (base * base) % mod;
return res;

Ul modexp_call() {
UI result = 1; int i;
i = EXP BITS;
while (i > 0) {
result = update (result);
i——7
}

return result;

16



CFG with Function Call

ragilt = 13
i = EXP BITS;

[result = update (result);

return result;

caII’________.\

7 N
¢ \
/ Y
/
| res = i3
| ((exponent & 1) == 1)7?
] 0
|
l 1
res = (res * base) % mod;]
\
\ exponent >>= 1;
} base = (base * base) % mod;
\
\
\
\ [ return res;]
e 7

~y
return

-_—-#



Factors Determining WCET

O Program path (control flow) analysis:
= Want to find longest path through the program
= Find loop bounds
= ldentify feasible paths through the program
= ldentify dependencies amongst different code fragments

O Processor behavior analysis:

= For small code fragments (basic blocks), generate
bounds on run-times on the platform

= Model details of architecture, including cache behavior,
pipeline stalls, branch prediction, etc.

O Outputs of both analyses feed into each other

18

Embedded Systems Design and Modeling



Unclear Loop Bound

0 How many times this loop iterates?

typedef unsigned int UI;

Ul modexpZ2 (UI base, UI exponent, UI mod)
Ul result = 1;

while (exponent != 0) {
1f ((exponent & 1) == 1) ({
result = (result * base) % mod;

L = e I == & B - & e R

}

10 exponent >>= 1;

4]

11 base = (base * base) % mod;

Embedded Systems Design and Modeling

{

19



Exponential Path Space

0 Nested loop: 219000 paths!

4 1int Ptotal, Pcnt, Ntotal, Necnt;

5 : 3

6 wvoid count () {

7 int Outer, Inner;

8 for (Outer = 0; Outer < MAXSIZE; Outer++) {
9 for (Inner = 0; Inner < MAXSIZE; Inner++)
10 if (Array[Outer] [Inner] >= 0) {

11 Ptotal += Array[Outer] [Inner];

12 Penkt 4tk

13 } else {

14 Ntotal += Array|[Outer] [Inner];

15 Nent +-+;

16 }
17 }
18 }

19 }

Embedded Systems Design and Modeling

{

20



Path Feasibility

void altitude pid run(void) {
float err = estimator z - desired altitude;
desired climb = pre climb + altitude pgain * err;
if (desired climb < -CLIMB MAX)
desired climb = -CLIMB MAX;
if (desired climb > CLIMB MAX)
desired climb = CLIMB MAX;

Only one of these statements is executed
(CLIMB_MAX =1.0)

Example from “PapaBench” UAV autopilot code, IRIT, France

21

Embedded Systems Design and Modeling




Memory Hierarchy (1)

Processor Behavior Analysis: Cache Effects

=

float dot_product (flecat +x, float +y, int n} {
float reszsulc = 0,0;
int i;
foxr{i=0; i < n; i++) {
result += =[i] * y[1];
t
return result;

;

- L T T

Suppose: What happens

1. 32-bit processor when n=27

2. Direct-mapped cache holds two sets
O 4 floats per set

O x and y stored contiguously
starting at address 0x0

One initial miss,
followed by all hits

22

Embedded Systems Design and Modeling




Memory Hierarchy (2)

Processor Behavior Analysis: Cache Effects

1 float dot_product (flecat +x, float «y, int n} |
float result = 0,0;
ant L
for{i=0; 1 < n; i++) {
result += x[i] « y[1];
h

return result;

}

G =3 h bn k= L& G

Suppose: What happens
1. 32-bit processor when n=8?

2. Direct-mapped cache holds two sets
O 4 floats per set

O x and y stored contiguously
starting at address 0x0

Every access to the
cache will be a miss

23

Embedded Systems Design and Modeling




Linear Programming

O Linear programming:
= The process of optimizing a linear function under linear
constraints A
= Each constraint is represented
by an equation or inequality
which is a line/plane/... in an n-
dimensional space

= All constraints need to be
satisfied simultaneously

= The solution (if any) lies on or
within the object formed in the
n-dimensional space

= In 2D, each equation/inequality
is a line, hence “linear” 1

24

Embedded Systems Design and Modeling




Integer Linear Programming

o If all solutions are integers, then it is called
iInteger linear programming (ILP)

= If solutions are either 1 or O, called O-1-ILP, ZOLP, or
binary linear programming

If some solutions are 1 or O, called mixed ILP (MILP)
In general: intractable (NP-hard)

But many solvers exist

= Biggest problem: not scalable

o If at least one inequality is nonlinear, then
m Use a nonlinear solver
m Convert to linear and use a linear solver

Embedded Systems Design and Modeling

25



WCET by ILP

Common Current Approach (high-level)

1. Manually construct processor behavior model

2. Use model to find “worst-case” starting processor
states for each basic block = measure execution
times of the blocks from these states

3. Use these times as upper bounds on the time of each
basic block

4. Formulate an integer linear program to find the
maximum sum of these bounds along any program
path

26

Embedded Systems Design and Modeling




ILP Formulation

Example ld1
= B1:
RS N =10; | x1
Ak q=0;

qt++
a-° d4
T X2 | while(q<N)
Xi = # times Bi is executed d5 43
dj 2 # times edge is executed :f" \
w4 | B4 B3: | 3
q=r e

l d6
Example due to Y.T. Li and S. Malik

Embedded Systems Design and Modeling




ILP Formulation (Cont’d)

Example, Revisited

Xi = # times Bi is executed
dj = # times edge is executed

C, = measured upper bound on
time taken by Bi

Want to
maximize X, C, Xi
subject to constraints
x1=d1=d2
d1=1
X2 = d2+d4 = d3+d5 x4
x3=d3=d4=10
x4 =d5=d6

Example due to Y.T. Li and S. Malik

d5 7 “.3
B4:
q=r,

¥4

l

d6

N=10;| x1

B2:
while(q<N)

Embedded Systems Design and Modeling

d4

B3:

q++,;

X3

Results:
Xx1l=dl=d2=1
x3=d3=d4=10
x2=11
X4=d5=d6=1

Note that logical
flow constraints,
cache behavior, or
other constraints
may be added to
equations without
Increasing
complexity!

28



Timing Analysis and Compositionality

Consider a task T with two parts A and B composed In
sequence: T=A;B

ls WCET(T) = WCET(A) + WCET(B) ?

NOT ALWAYS!
WCETSs cannot simply be composed ®
- Due to dependencies “through environment”

Embedded Systems Design and Modeling

29



Focusing on Measurement

O How to measure run-time”?

O Several technigues, with varying
accuracy:

1. Instrument code to sample CPU cycle counter

relatively easy to do, read processor documentation
for assembly instruction

2. Use cycle-accurate simulator for processor
useful when hardware is not available/ready

3. Use Logic Analyzer
non-intrusive measurement, more accurate

30

Embedded Systems Design and Modeling




Cycle Counters

Most modern systems have built in registers that are
incremented every clock cycle

Special assembly code instruction to access

On Intel 32-bit x86 machines since Pentium:
64 bit counter

RDTSC instruction (ReaD Time Stamp Counter) sets
sedx register to high order 32-bits, *eax register to low
order 32-bits

Wrap-around time for 2 GHz machine
Low order 32-bits every 2.1 seconds

High order 64 bits every 293 years

31

Embedded Systems Design and Modeling




Measuring with Cycle Counter

Idea
Get current value of cycle counter
store as pair of unsigned's cyc hi and cyc lo

Compute something

Get new value of cycle counter
Perform double precision subtraction to get elapsed cycles

/* Reep track of most recent reading of cycle counter */

static unsigned cyc hi = 0;
static unsigned cyc _lo = 0;

void stnrt_:aunter[}

{

/* Get current value of cycle counter */
access_counter(&cyc_hi, &cyc_lo);

}

32

Embedded Systems Design and Modeling




Cycle Counter (Cont’d)

Time Function P
First attempt: Simply count cycles for one execution of P

double tcycles;
start_counter();

F():
tcycles = get_counter();

What can go wrong here?

Embedded Systems Design and Modeling

33



Measurement Pitfalls

O Instrumentation incurs small overhead

= Measure long enough code sequence to
compensate

O Multi-tasking effects: counter keeps going even when
the task of interest is inactive

= Take multiple measurements and pick “k best”
(cluster)

O Multicores/hyperthreading
= Need to ensure that task is ‘locked’ to a single core

O Power management effects

= CPU speed might change, timer could get reset
during hibernation

34

Embedded Systems Design and Modeling




WCET Open Problems

0O Accurate WCET estimation/measurement
requires detailed understanding of the
architecture

O Analysis methods are brittle: small
changes in the code and/or architecture
can regquire complete redone

O Need to deal with concurrency, interrupt,
preemption, scheduling, etc.

0 Need more reliable techniques for WCET
measurement

35

Embedded Systems Design and Modeling




Tools for WCET Analysis

Name Primary Type Institution & Website/References
aiT Static AbsInt Angewandte Informatik GmbH (Wilhelm, 2005)
http://www.absint.com/ait/
Bound-T Static Tidorum Ltd.
http://www.bound-t.com/
Chronos Static National University of Singapore (Li et al., 2005)
http://www.comp.nus.edu.sg/~rpembed/chronos/
Heptane Static IRISA Rennes
http://www.irisa.fr/aces/work/heptane-demo/heptane.html
SWEET Static Milardalen University
http://www.mrtc.mdh.se/projects/wcet/
GameTime Measurement UC Berkeley
Seshia and Rakhlin (2008)
RapiTime Measurement Rapita Systems Ltd.
http://www.rapitasystems.com/
SymTA/P Measurement Technical University Braunschweig
http://www.ida.ing.tu-bs.de/research/projects/symtap/
Vienna M./P. | Measurement Technical University of Vienna

http://www.wcet.at/




Other Quantitative Measures (1)

0o Memory bound analysis:
= Limited memory in embedded systems
= Need to use memory efficiently

0 Analysis methods:

m Stack size: compute upper bound on stack
Generates a call graph to predict stack usage

= Heap analysis: predict heap usage to avoid
software crash or performance degradation

Harder than stack bound b/c heap usage depends on
iInput data

Also depends on implementation

37

Embedded Systems Design and Modeling




Other Quantitative Measures (2)

O Power and energy analysis:
= Limited energy budget in embedded systems

= Need to manage energy consumption
efficiently

= Energy usage depends on:
execution time
switching activity
both depend on the input data
= Focus on average power consumption instead
Estimation by instruction profiling
Software benchmarking

Embedded Systems Design and Modeling

38



Homework Assignments

o Chapter 16: your choice
O Due date: any time before final exam!

Embedded Systems Design and Modeling

39



Further Thoughts

0 Go over Absint’s aiT

Embedded Systems Design and Modeling

40



